import math
import numpy as np
from scipy.stats import norm
from . import common_args
from ..util import read_param_file, ResultDict
[docs]def analyze(problem, Y, M=4, num_resamples=100, conf_level=0.95, print_to_console=False, seed=None):
"""Performs the extended Fourier Amplitude Sensitivity Test (eFAST) on model outputs.
Returns a dictionary with keys 'S1' and 'ST', where each entry is a list of
size D (the number of parameters) containing the indices in the same order
as the parameter file.
Notes
-----
Compatible with:
`fast_sampler` : :func:`SALib.sample.fast_sampler.sample`
Parameters
----------
problem : dict
The problem definition
Y : numpy.array
A NumPy array containing the model outputs
M : int
The interference parameter, i.e., the number of harmonics to sum in
the Fourier series decomposition (default 4)
print_to_console : bool
Print results directly to console (default False)
References
----------
.. [1] Cukier, R. I., C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H.
Schaibly (1973). "Study of the sensitivity of coupled reaction
systems to uncertainties in rate coefficients." J. Chem. Phys.,
59(8):3873-3878, doi:10.1063/1.1680571.
.. [2] Saltelli, A., S. Tarantola, and K. P.-S. Chan (1999). "A
Quantitative Model-Independent Method for Global Sensitivity
Analysis of Model Output." Technometrics, 41(1):39-56,
doi:10.1080/00401706.1999.10485594.
.. [3] Pujol, G. (2006)
fast99 - R `sensitivity` package
https://github.com/cran/sensitivity/blob/master/R/fast99.R
Examples
--------
>>> X = fast_sampler.sample(problem, 1000)
>>> Y = Ishigami.evaluate(X)
>>> Si = fast.analyze(problem, Y, print_to_console=False)
"""
if seed:
np.random.seed(seed)
D = problem['num_vars']
if Y.size % (D) == 0:
N = int(Y.size / D)
else:
msg = """
Error: Number of samples in model output file must be a multiple of D,
where D is the number of parameters.
"""
raise ValueError(msg)
# Recreate the vector omega used in the sampling
omega_0 = math.floor((N - 1) / (2 * M))
# Calculate and Output the First and Total Order Values
Si = ResultDict((k, [None] * D) for k in ['S1', 'ST', 'S1_conf', 'ST_conf'])
Si['names'] = problem['names']
for i in range(D):
l = np.arange(i * N, (i + 1) * N)
Y_l = Y[l]
S1, ST = compute_orders(Y_l, N, M, omega_0)
Si['S1'][i] = S1
Si['ST'][i] = ST
S1_d_conf, ST_d_conf = bootstrap(Y_l, M, num_resamples, conf_level)
Si['S1_conf'][i] = S1_d_conf
Si['ST_conf'][i] = ST_d_conf
if print_to_console:
print(Si.to_df())
return Si
[docs]def compute_orders(outputs: np.ndarray, N: int, M: int, omega: int):
f = np.fft.fft(outputs)
Sp = np.power(np.absolute(f[np.arange(1, math.ceil(N / 2))]) / N, 2)
V = 2.0 * np.sum(Sp)
# Calculate first and total order
D1 = 2.0 * np.sum(Sp[np.arange(1, M + 1) * omega - 1])
Dt = 2.0 * np.sum(Sp[np.arange(math.floor(omega / 2.0))])
return (D1 / V), (1.0 - Dt / V)
[docs]def bootstrap(Y: np.ndarray, M: int, resamples: int, conf_level: float):
"""Compute CIs.
Infers ``N`` from results of sub-sample ``Y`` and re-estimates omega (ω)
for the above ``N``.
"""
# Use half of available data each time
T_data = Y.shape[0]
n_size = math.ceil(T_data * 0.5)
res_S1 = np.zeros(resamples)
res_ST = np.zeros(resamples)
for i in range(resamples):
sample_idx = np.random.choice(T_data, replace=True, size=n_size)
Y_rs = Y[sample_idx]
N = len(Y_rs)
omega = math.floor((N - 1) / (2 * M))
S1, ST = compute_orders(Y_rs, N, M, omega)
res_S1[i] = S1
res_ST[i] = ST
bnd = norm.ppf(0.5 + conf_level / 2.0)
S1_conf = bnd * res_S1.std(ddof=1)
ST_conf = bnd * res_ST.std(ddof=1)
return S1_conf, ST_conf
# No additional arguments required for FAST
[docs]def cli_parse(parser):
"""Add method specific options to CLI parser.
Parameters
----------
parser : argparse object
Returns
----------
Updated argparse object
"""
parser.add_argument('-M', '--M', type=int, required=False,
default=4,
help='Inference parameter')
parser.add_argument('-r', '--resamples', type=int, required=False,
default=100,
help='Number of bootstrap resamples for Sobol '
'confidence intervals')
return parser
[docs]def cli_action(args):
problem = read_param_file(args.paramfile)
Y = np.loadtxt(args.model_output_file,
delimiter=args.delimiter, usecols=(args.column,))
analyze(problem, Y, M=args.M, num_resamples=args.resamples,
print_to_console=True, seed=args.seed)
if __name__ == "__main__":
common_args.run_cli(cli_parse, cli_action)